Abbott, H. L. and Katchalski, M. "On the Snake in the Box Problem." J. Combin. Th. Ser. B44, 12-24, 1988.Danzer, L. and Klee, V. "Length of Snakes in Boxes." J. Combin. Th.2, 258-265, 1967.Douglas, R. J. "Some Results on the Maximum Length of Circuits of Spread in the -Cube." J. Combin. Th.6, 323-339, 1969.Emelianov, P. "Snake-in-the-Box." http://mix.nsk.ru/epg/snake.html.Evdokimov, A. A. "Maximal Length of a Chain in a Unit -Dimensional Cube." Mat. Zametki6, 309-319, 1969.Guy, R. K. "Unsolved Problems Come of Age." Amer. Math. Monthly96, 903-909, 1989.Guy, R. K. "Monthly Unsolved Problems." Amer. Math. Monthly94, 961-970, 1989.Guy, R. K. and Nowakowski, R. J. "Monthly Unsolved Problems, 1696-1995." Amer. Math. Monthly102, 921-926, 1995.Kautz, W. H. "Unit-Distance Error-Checking Codes." IRE Trans. Elect. Comput.7, 177-180, 1958.Klee, V. "What is the Maximum Length of a -Dimensional Snake?" Amer. Math. Monthly77, 63-65, 1970.Sloane, N. J. A. Sequence A000937/M0995 in "The On-Line Encyclopedia of Integer Sequences."Snevily, H. S. "The Snake-in-the-Box Problem: A New Upper Bound." Disc. Math.133, 307-314, 1994.Solov'jeva, F. I. "An Upper Bound for the Length of a Cycle in an -Dimensional Cube." Diskret. Analiz.45, 1987.