主题
Search

罗宾斯代数


基于 Huntington (1933ab) 的工作,罗宾斯猜想罗宾斯代数的方程,即交换律、结合律和罗宾斯公理

 !(!(x v y) v !(x v !y))=x,

其中 !x 表示 x v y 表示 ,蕴含了布尔代数的那些方程。该猜想最终通过计算机证明 (McCune 1997)。


另请参阅

布尔代数, 亨廷顿公理, 罗宾斯猜想, 罗宾斯公理, 温克勒条件

使用 探索

参考文献

Fitelson, B. "Using Mathematica to Understand the Computer Proof of the Robbins Conjecture." Mathematica in Educ. Res. 7, 17-26, 1998. http://library.wolfram.com/infocenter/Articles/1475/. Fitelson, B. "Proof of the Robbins Conjecture." http://library.wolfram.com/infocenter/MathSource/291/.Huntington, E. V. "New Sets of Independent Postulates for the Algebra of Logic, with Special Reference to Whitehead and Russell's Principia Mathematica." Trans. Amer. Math. Soc. 35, 274-304, 1933a.Huntington, E. V. "Boolean Algebra. A Correction." Trans. Amer. Math. Soc. 35, 557-558, 1933b.Kolata, G. "Computer Math Proof Shows Reasoning Power." New York Times, Dec. 10, 1996.McCune, W. "Solution of the Robbins Problem." J. Automat. Reason. 19, 263-276, 1997.McCune, W. "Robbins Algebras are Boolean." http://www.cs.unm.edu/~mccune/papers/robbins/.Nelson, E. "Automated Reasoning." http://www.math.princeton.edu/~nelson/ar.html.

在 中被引用

罗宾斯代数

请引用为

Weisstein, Eric W. "罗宾斯代数。" 来自 —— 资源。 https://mathworld.net.cn/RobbinsAlgebra.html

主题分类