主题
Search

罗宾斯代数


基于 Huntington (1933ab) 的工作,罗宾斯猜想罗宾斯代数的方程,即交换律、结合律和罗宾斯公理

 !(!(x v y) v !(x v !y))=x,

其中 !x 表示 x v y 表示 ,蕴含了布尔代数的那些方程。该猜想最终通过计算机证明 (McCune 1997)。


另请参阅

布尔代数, 亨廷顿公理, 罗宾斯猜想, 罗宾斯公理, 温克勒条件

使用 Wolfram|Alpha 探索

参考文献

Fitelson, B. "Using Mathematica to Understand the Computer Proof of the Robbins Conjecture." Mathematica in Educ. Res. 7, 17-26, 1998. http://library.wolfram.com/infocenter/Articles/1475/. Fitelson, B. "Proof of the Robbins Conjecture." http://library.wolfram.com/infocenter/MathSource/291/.Huntington, E. V. "New Sets of Independent Postulates for the Algebra of Logic, with Special Reference to Whitehead and Russell's Principia Mathematica." Trans. Amer. Math. Soc. 35, 274-304, 1933a.Huntington, E. V. "Boolean Algebra. A Correction." Trans. Amer. Math. Soc. 35, 557-558, 1933b.Kolata, G. "Computer Math Proof Shows Reasoning Power." New York Times, Dec. 10, 1996.McCune, W. "Solution of the Robbins Problem." J. Automat. Reason. 19, 263-276, 1997.McCune, W. "Robbins Algebras are Boolean." http://www.cs.unm.edu/~mccune/papers/robbins/.Nelson, E. "Automated Reasoning." http://www.math.princeton.edu/~nelson/ar.html.

在 Wolfram|Alpha 中被引用

罗宾斯代数

请引用为

Weisstein, Eric W. "罗宾斯代数。" 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/RobbinsAlgebra.html

主题分类