主题
Search

叶序


某些植物中叶片的美丽排列,称为叶序,遵循一些微妙的数学关系。 例如,向日葵花盘中的小花形成两个方向相反的螺旋:55 个顺时针方向和 34 个逆时针方向。 令人惊讶的是,这些数字是连续的 斐波那契数。 间隔 斐波那契数 的比率由收敛值 phi^(-2) 给出,其中 phi黄金比例,据说衡量植物茎上连续叶片之间转动的分数:榆树和椴树为 1/2,山毛榉和榛树为 1/3,橡树和苹果树为 2/5,杨树和玫瑰为 3/8,柳树和杏树为 5/13 等。(Coxeter 1969,Ball 和 Coxeter 1987)。 类似的现象也发生在雏菊、菠萝、松果、花椰菜等等。

百合花、鸢尾花和延龄草有三片花瓣; 耧斗菜、毛茛花、翠雀花和野玫瑰有五片花瓣; 飞燕草、血根草和波斯菊有八片花瓣; 玉米万寿菊有 13 片花瓣; 紫菀有 21 片花瓣; 雏菊有 34、55 或 89 片花瓣——全部都是 斐波那契数


另请参阅

Daisy, Fibonacci Number, Golden Angle, Spiral

使用 探索

参考文献

Azukawa, K. and Yuzawa, T. "A Remark on the Continued Fraction Expansion of Conjugates of the Golden Section." Math. J. Toyama Univ. 13, 165-176, 1990.Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 第 13 版 New York: Dover, pp. 56-57, 1987.Church, A. H. The Relation of Phyllotaxis to Mechanical Laws. London: Williams and Norgate, 1904.Church, A. H. On the Interpretation of Phenomena of Phyllotaxis. Riverside, NJ: Hafner, 1968.Conway, J. H. and Guy, R. K. "Phyllotaxis." In The Book of Numbers. New York: Springer-Verlag, pp. 113-125, 1995.Cook, T. A. The Curves of Life, Being an Account of Spiral Formations and Their Application to Growth in Nature, To Science and to Art. New York: Dover, 1979.Coxeter, H. S. M. "The Golden Section and Phyllotaxis." Ch. 11 in Introduction to Geometry, 2nd ed. New York: Wiley, 1969.Coxeter, H. S. M. "The Role of Intermediate Convergents in Tait's Explanation for Phyllotaxis." J. Algebra 10, 167-175, 1972.Coxeter, H. S. M. "The Golden Section, Phyllotaxis, and Wythoff's Game." Scripta Mathematica 19, 135-143, 1953.Dixon, R. "The Mathematics and Computer Graphics of Spirals in Plants." Leonardo 16, 86-90, 1983.Dixon, R. Mathographics. New York: Dover, 1991.Douady, S. and Couder, Y. "Phyllotaxis as a Self-Organized Growth Process." In Growth Patterns in Physical Sciences and Biology (Ed. J. M. Garcia-Ruiz et al. ). New York: Plenum, 1993.Gardner, M. Mathematical Circus: More Puzzles, Games, Paradoxes and Other Mathematical Entertainments from Scientific American. New York: Knopf, 1979.Hargittai, I. and Pickover, C. A. (编辑). Spiral Symmetry. New York: World Scientific, 1992.Hunter, J. A. H. and Madachy, J. S. Mathematical Diversions. New York: Dover, pp. 20-22, 1975.Jean, R. V. "Number-Theoretic Properties of Two-Dimensional Lattices." J. Number Th. 29, 206-223, 1988.Jean, R. V. "On the Origins of Spiral Symmetry in Plants." In Spiral Symmetry. (Ed. I. Hargittai and C. A. Pickover). New York: World Scientific, pp. 323-351, 1992.Jean, R. V. Phyllotaxis: A Systematic Study in Plant Morphogenesis. New York: Cambridge University Press, 1994.Naylor, M. "Golden, sqrt(2), and pi Flowers: A Spiral Story." Math. Mag. 75, 163-172, 2002.Livio, M. The Golden Ratio: The Story of Phi, the World's Most Astonishing Number. New York: Broadway Books, 2002.Pappas, T. "The Fibonacci Sequence & Nature." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 222-225, 1989.Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic Beauty of Plants. New York: Springer-Verlag, 1990.Steinhaus, H. Mathematical Snapshots, 第 3 版 New York: Dover, p. 138, 1999.Stevens, P. S. Patterns in Nature. London: Peregrine, 1977.Stewart, I. "Daisy, Daisy, Give Me Your Answer, Do." Sci. Amer. 200, 96-99, Jan. 1995.Thompson, D. W. On Growth and Form. Cambridge, England: Cambridge University Press, 1952.Trott, M. Graphica 1: The World of Mathematica Graphics. The Imaginary Made Real: The Images of Michael Trott. Champaign, IL: Wolfram Media, pp. 11 and 83, 1999.Vogel, H. "A Better Way to Construct the Sunflower Head." Math. Biosci. 44, 179-189, 1979.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 65-66, 1986.

在 中引用

叶序

引用为

Weisstein, Eric W. “叶序。” 来自 —— 资源。 https://mathworld.net.cn/Phyllotaxis.html

主题分类