Anderson, R. J. "On the Mertens Conjecture for Cusp Forms." Mathematika26, 236-249, 1979.Anderson, R. J. "Corrigendum: 'On the Mertens Conjecture for Cusp Forms.' " Mathematika27, 261, 1980.Deléglise, M. and Rivat, J. "Computing the Summation of the Möbius Function." Experiment. Math.5, 291-295, 1996.Derbyshire, J. 素数 Obsession:Bernhard Riemann 和数学中最伟大的未解问题。 New York: Penguin, 2004.Devlin, K. "The Mertens Conjecture." Irish Math. Soc. Bull.17, 29-43, 1986.Dress, F. "Fonction sommatoire de la fonction de Möbius; 1. Majorations expérimentales." Experiment. Math.2, 93-102, 1993.Grupp, F. "On the Mertens Conjecture for Cusp Forms." Mathematika29, 213-226, 1982.Hardy, G. H. 拉马努金:关于他的生活和工作提出的主题的十二次讲座,第 3 版。 New York: Chelsea, p. 64, 1999.Havil, J. Gamma:探索欧拉常数。 Princeton, NJ: Princeton University Press, 2003.Jurkat, W. and Peyerimhoff, A. "A Constructive Approach to Kronecker Approximation and Its Application to the Mertens Conjecture." J. reine angew. Math.286/287, 322-340, 1976.Lehman, R. S. "On Liouville's Functions." Math. Comput.14, 311-320, 1960.Lioen, W. M. and van de Lune, J. "Systematic Computations on Mertens' Conjecture and Dirichlet's Divisor Problem by Vectorized Sieving." In 从通用态射到兆字节:Baayen 空间奥德赛。在 P. C. Baayen 退休之际 (Ed. K. Apt, L. Schrijver, and N. Temme). Amsterdam, Netherlands: Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, pp. 421-432, 1994. http://walter.lioen.com/papers/LL94.pdf.Mertens, F. "Über eine zahlentheoretische Funktion." Sitzungsber. Akad. Wiss. Wien IIa106, 761-830, 1897.Odlyzko, A. M. and te Riele, H. J. J. "Disproof of the Mertens Conjecture." J. reine angew. Math.357, 138-160, 1985.Pintz, J. "An Effective Disproof of the Mertens Conjecture." Astérique147-148, 325-333 and 346, 1987.Stieltjes, T. C. R. A. S. 1885.te Riele, H. J. J. "Some Historical and Other Notes About the Mertens Conjecture and Its Recent Disproof." Nieuw Arch. Wisk.3, 237-243, 1985.te Riele, H. R. "The Mertens Conjecture Revisited." 7th Algorithmic Number Theory Symposium. Technische Universität Berlin, 23-28 July 2006.http://www.math.tu-berlin.de/~kant/ants/Proceedings/te_riele/te_riele_talk.pdf.von Sterneck, R. D. "Die zahlentheoretische Funktion bis zur Grenze 500000." Akad. Wiss. Wien Math.-Natur. Kl. Sitzungsber. IIa121, 1083-1096, 1912.