主题
Search

卡多姆采夫-皮特维亚什维利方程


偏微分方程

 3/4U_y+W_x=0,
(1)

其中

 W_y+U_t-1/4U_(xxx)+3/2UU_x=0
(2)

(Krichever 和 Novikov 1980;Novikov 1999)。Zwillinger(1997,第 131 页)以及 Calogero 和 Degasperis(1982,第 54 页)将该方程给出为

 partial/(partialx)(u_t+u_(xxx)-6uu_x)+/-u_(yy)=0.
(3)

修改后的卡多姆采夫-皮特维亚什维利方程由下式给出

 u_(xt)=u_(xxx)+3u_(yy)-6u_x^2u_(xx)-6u_yu_(xx)
(4)

(Clarkson 1986;Zwillinger 1997,第 133 页)。


另请参阅

卡多姆采夫-皮特维亚什维利-伯格斯方程Korteweg-de Vries 方程克里切韦尔-诺维科夫方程

使用 Wolfram|Alpha 探索

参考文献

Baker, H. F. Abelian Functions: Abel's Theorem and the Allied Theory, Including the Theory of the Theta Functions. New York: Cambridge University Press, p. xix, 1995.Calogero, F. and Degasperis, A. Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations. New York: North-Holland, 1982.Clarkson, P. A. "The Painlevé Property, a Modified Boussinesq Equation and a Modified Kadomtsev-Petviashvili Equation." Physica D 19, 447-450, 1986.Krichever, I. M. and Novikov, S. P. "Holomorphic Bundles over Algebraic Curves, and Nonlinear Equations." Russ. Math. Surv. 35, 53-80, 1980. English translation of Uspekhi Mat. Nauk 35, 47-68, 1980.Novikov, D. P. "Algebraic-Geometric Solutions of the Krichever-Novikov Equation." Theoret. Math. Phys. 121, 1567-15773, 1999.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 131, 1997.

在 Wolfram|Alpha 中被引用

卡多姆采夫-皮特维亚什维利方程

引用为

Weisstein, Eric W. "卡多姆采夫-皮特维亚什维利方程。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/Kadomtsev-PetviashviliEquation.html

主题分类