电路秩 是从一个具有 条图边和 个节点的无向图中,必须移除的最少图边数,使得图中不再有图环。电路秩也给出了图的环基中的基本环的数量 (Harary 1994, pp. 37-40; White 2001, p. 56)。这个概念最初由古斯塔夫·基尔霍夫 (Gustav Kirchhoff) 提出 (Kirchhoff 1847; Veblen 1916, p. 9; Kotiuga 2010, p. 20),并且已经被许多不同的名称和符号引用,如下表所示。
名称
参考文献
电路秩
环秩
Harary (1994, p. 39), White (2001, p. 56), Gross and Yellen (2006, pp. 192 and 661)
(第一)图贝蒂数
White (2001), Gross and Yellen (2006, pp. 192)
圈数
Listing (1862), Veblen (1916, pp. 9 and 18)
图的零度
符号
参考文献
Veblen (1916, pp. 9 and 18), Volkmann (1996), Babić et al. (2002)
Gross and Yellen (2006, pp. 192 and 661), White (2001, p. 56)
Ahrens, W. "Über das Gleichungssystem einer Kirchhoffschen galvanischen Stromverzweigung." Math. Ann.49, 311-324, 1897.Babić, D.; Klein, D. J.; Lukovits, I.; Nikolić, S.; and Trinajstić, N. "Resistance-Distance Matrix: A Computational Algorithm and Its Applications." Int. J. Quant. Chem.90, 166-176, 2002.Devillers, J. and Balaban, A. T. (Eds.). Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, 1999.Gross, J. T. and Yellen, J. Graph Theory and Its Applications, 2nd ed. Boca Raton, FL: CRC Press, 2006.HararyHarary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.Kirchhoff, G. "Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird." Ann. d. Phys. Chem.72, 497-508, 1847.König, D. Theorie der endlichen und unendlichen Graphen. Leipzig, Germany: Akademische Verlagsgesellschaft, 1936.Kotiuga, P. R. A Celebration of the Mathematical Legacy of Raoul Bott. Providence, RI: Amer. Math. Soc., 2010.Listing, J. B. Census raumliche Komplexe. Göttingen, Germany: 1862.Mateti, P. and Deo, N. "On Algorithms for Enumerating All Circuits of a Graph." SIAM J. Comput.5, 90-99, 1976.Veblen, O. Analysis Situs. New York: Amer. Math. Soc., 1916.Volkmann, L. "Estimations for the Number of Cycles in a Graph." Per. Math. Hungar.33, 153-161, 1996.White, A. T. "Imbedding Problems in Graph Theory." Ch. 6 in Graphs of Groups on Surfaces: Interactions and Models (Ed. A. T. White). Amsterdam, Netherlands: Elsevier, pp. 49-72, 2001.Wilson, R. J. Introduction to Graph Theory. Edinburgh: Oliver and Boyd, p. 46, 1971.