主题
Search

比贝尔巴赫猜想


单叶函数的第 n系数幂级数中应不大于 n。换句话说,如果

 f(z)=a_0+a_1z+a_2z^2+...+a_nz^n+...

共形映射 在任何域上的单位圆盘,且 a_0=0a_1=1,则 |a_n|<=n|a_1|。更专业地说,“几何极值性蕴含度量极值性”。另一种表述是对于任何 schlicht 函数 f|a_j|<=j (Krantz 1999, p. 150)。

该猜想的前六项已被证明(n=2、3 和 4 的情况分别由 Bieberbach、Lowner 以及 Garabedian 和 Schiffer 完成),已知仅对有限数量的索引为假 (Hayman 1954),并且对于凸域或对称域为真 (Le Lionnais 1983)。一般情况由 Louis de Branges (1985) 证明。de Branges 证明了 Milin 猜想,该猜想确立了 Robertson 猜想,Robertson 猜想反过来又确立了比贝尔巴赫猜想 (Stewart 1996)。

作者结果
Bieberbach (1916)|a_2|<=2
Löwner (1923)|a_3|<=3
Garabedian and Schiffer (1955)|a_4|<=4
Pederson (1968), Ozawa (1969)|a_6|<=6
Pederson and Schiffer (1972)|a_5|<=5
de Branges (1985)|a_j|<=j 对于所有 j

求和

 sum_(j=k)^n(-1)^(k+j)(2j; j-k)(n+j+1; n-j)e^(-jt)

是 de Branges 证明中的一个重要工具 (Koepf 1998, p. 29)。


另请参阅

Milin 猜想, Robertson 猜想, Schlicht 函数, 单叶函数

使用 探索

参考文献

Bieberbach, L. "Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln。" Sitzungsber. Preuss. Akad. Wiss., pp. 940-955, 1916.Charzynski, Z. and Schiffer, M. "A New Proof of the Bieberbach Conjecture for the Fourth Coefficient。" Arch. Rational Mech. Anal. 5, 187-193, 1960.de Branges, L. "A Proof of the Bieberbach Conjecture。" Acta Math. 154, 137-152, 1985.Duren, P.; Drasin, D.; Bernstein, A.; and Marden, A. The Bieberbach Conjecture: Proceedings of the Symposium on the Occasion of the Proof. Providence, RI: Amer. Math. Soc., 1986.Garabedian, P. R. "Inequalities for the Fifth Coefficient。" Comm. Pure Appl. Math. 19, 199-214, 1966.Garabedian, P. R.; Ross, G. G.; and Schiffer, M. "On the Bieberbach Conjecture for Even n。" J. Math. Mech. 14, 975-989, 1965.Garabedian, R. and Schiffer, M. "A Proof of the Bieberbach Conjecture for the Fourth Coefficient。" J. Rational Mech. Anal. 4, 427-465, 1955.Gong, S. The Bieberbach Conjecture. Providence, RI: Amer. Math. Soc., 1999.Hayman, W. K. Multivalent Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1994.Hayman, W. K. and Stewart, F. M. "Real Inequalities with Applications to Function Theory。" Proc. Cambridge Phil. Soc. 50, 250-260, 1954.Kazarinoff, N. D. "Special Functions and the Bieberbach Conjecture。" Amer. Math. Monthly 95, 689-696, 1988.Koepf, W. "Hypergeometric Identities。" Ch. 2 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 29, 1998.Korevaar, J. "Ludwig Bieberbach's Conjecture and its Proof。" Amer. Math. Monthly 93, 505-513, 1986.Krantz, S. G. "The Bieberbach Conjecture。" §12.1.2 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 149-150, 1999.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 53, 1983.Löwner, K. "Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I。" Math. Ann. 89, 103-121, 1923.Ozawa, M. "On the Bieberbach Conjecture for the Sixth Coefficient。" Kodai Math. Sem. Rep. 21, 97-128, 1969.Pederson, R. N. "On Unitary Properties of Grunsky's Matrix。" Arch. Rational Mech. Anal. 29, 370-377, 1968.Pederson, R. N. "A Proof of the Bieberbach Conjecture for the Sixth Coefficient。" Arch. Rational Mech. Anal. 31, 331-351, 1968/1969.Pederson, R. and Schiffer, M. "A Proof of the Bieberbach Conjecture for the Fifth Coefficient。" Arch. Rational Mech. Anal. 45, 161-193, 1972.Stewart, I. "The Bieberbach Conjecture。" In From Here to Infinity: A Guide to Today's Mathematics. Oxford, England: Oxford University Press, pp. 164-166, 1996.Weinstein, L. "The Bieberbach Conjecture。" Internat. Math. Res. Not. 5, 61-64, 1991.

请引用本文为

Weisstein, Eric W. "比贝尔巴赫猜想。" 来自 -- 资源。 https://mathworld.net.cn/BieberbachConjecture.html

主题分类