光谱学和角动量理论中的一个 фундаментальное 重要定理,它提供了 (1) 不可约张量的所有矩阵元素对投影量子数依赖性的显式形式,以及 (2) 角动量守恒定律的形式表达式 (Rose 1995)。
该定理指出,矩阵元素
对投影量子数的依赖性完全包含在 Wigner 3j 符号 (或等价地,克莱布施-戈尔丹系数) 中,由下式给出
其中
是 克莱布施-戈尔丹系数,
是一组张量算符 (Rose 1995, p. 85)。
另请参阅
克莱布施-戈尔丹系数,
Wigner 3j 符号
使用 Wolfram|Alpha 探索
参考文献
Cohen-Tannoudji, C.; Diu, B.; and Laloë, F. "Vector Operators: The WIgner-Eckart Theorem." Complement
in Quantum Mechanics, Vol. 2. New York: Wiley, pp. 1048-1058, 1977.Eckart, C. "The Application of Group Theory to the Quantum Dynamics of Monatomic Systems." Rev. Mod. Phys. 2, 305-380, 1930.Edmonds, A. R. Angular Momentum in Quantum Mechanics, 2nd ed., rev. printing. Princeton, NJ: Princeton University Press, 1968.Gordy, W. and Cook, R. L. Microwave Molecular Spectra, 3rd ed. New York: Wiley, p. 807, 1984.Messiah, A. "Representation of Irreducible Tensor Operators: Wigner-Eckart Theorem." §32 in Quantum Mechanics, Vol. 2. Amsterdam, Netherlands: North-Holland, pp. 573-575, 1962.Rose, M. E. "The Wigner-Eckart Theorem." §19 in Elementary Theory of Angular Momentum. New York: Dover, pp. 85-94, 1995.Shore, B. W. and Menzel, D. H. "Tensor Operators and the Wigner-Eckart Theorem." §6.4 in Principles of Atomic Spectra. New York: Wiley, pp. 285-294, 1968.Wigner, E. P. "Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen." Z. Physik 43, 624-652, 1927.Wigner, E. P. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, expanded and improved ed. New York: Academic Press, 1959.Wybourne, B. G. Symmetry Principles and Atomic Spectroscopy. New York: Wiley, pp. 89 and 93-96, 1970.在 Wolfram|Alpha 中被引用
Wigner-Eckart 定理
请引用为
Weisstein, Eric W. "Wigner-Eckart 定理。" 来自 MathWorld--一个 Wolfram Web 资源。 https://mathworld.net.cn/Wigner-EckartTheorem.html
学科分类