黎曼 P-微分方程的解被称为黎曼
-级数,或有时称为黎曼
-函数,由下式给出
![u(z)=P{a b c; alpha beta gamma; alpha^' beta^' gamma^';z}.](/images/equations/RiemannP-Series/NumberedEquation1.svg) |
(1)
|
解由 超几何函数 给出:
其中
![lambda=((z-a)(c-b))/((z-b)(c-a)).](/images/equations/RiemannP-Series/NumberedEquation2.svg) |
(6)
|
另请参阅
黎曼 P-微分方程
使用 Wolfram|Alpha 探索
参考文献
Abramowitz, M. and Stegun, I. A. (Eds.). "Riemann's Differential Equation." §15.6 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 564-565, 1972.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 541-543, 1953.Riemann, B. Abh. d. Ges. d. Wiss. zu Göttingen 7, 1857. Reprinted in Mathematisch Werke, p. 67, 1892.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 283-284, 1990.Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, p. 414, 1995.在 Wolfram|Alpha 上被引用
黎曼 P 级数
引用为
Weisstein, Eric W. "Riemann P-Series." 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/RiemannP-Series.html
主题分类