主题
Search

黎曼 P 级数


黎曼 P-微分方程的解被称为黎曼 P-级数,或有时称为黎曼 P-函数,由下式给出

 u(z)=P{a b c; alpha beta gamma; alpha^' beta^' gamma^';z}.
(1)

解由 超几何函数 给出:

u_1=((z-a)/(z-b))^alpha((z-c)/(z-b))^gamma_2F_1(alpha+beta+gamma,alpha+beta^'+gamma;1+alpha-alpha^';lambda)
(2)
u_2=((z-a)/(z-b))^(alpha^')((z-c)/(z-b))^gamma_2F_1(alpha^'+beta+gamma,alpha^'+beta^'+gamma;1+alpha^'-alpha;lambda)
(3)
u_3=((z-a)/(z-b))^alpha((z-c)/(z-b))^(gamma^')_2F_1(alpha+beta+gamma^',alpha+beta^'+gamma^';1+alpha-alpha^';lambda)
(4)
u_4=((z-a)/(z-b))^(alpha^')((z-c)/(z-b))^(gamma^')_2F_1(alpha^'+beta+gamma^',alpha^'+beta^'+gamma^';1+alpha^'-alpha;lambda),
(5)

其中

 lambda=((z-a)(c-b))/((z-b)(c-a)).
(6)

另请参阅

黎曼 P-微分方程

使用 Wolfram|Alpha 探索

参考文献

Abramowitz, M. and Stegun, I. A. (Eds.). "Riemann's Differential Equation." §15.6 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 564-565, 1972.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 541-543, 1953.Riemann, B. Abh. d. Ges. d. Wiss. zu Göttingen 7, 1857. Reprinted in Mathematisch Werke, p. 67, 1892.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 283-284, 1990.Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, p. 414, 1995.

在 Wolfram|Alpha 上被引用

黎曼 P 级数

引用为

Weisstein, Eric W. "Riemann P-Series." 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/RiemannP-Series.html

主题分类