主题
Search

洛伦兹曲线


洛伦兹曲线在经济学和生态学中用于描述财富或规模的不平等性。洛伦兹曲线是将有序个体的累积比例映射到其规模的相应累积比例的函数。给定一个 n 个有序个体的样本,其中 x_i^' 是个体 i 的大小,且 x_1^'<x_2^'<...<x_n^',则样本洛伦兹曲线是连接点 (h/n,L_h/L_n) 的多边形,其中 h=0, 1, 2, ...n, L_0=0, 且 L_h=sum_(i=1)^(h)x_i^'。或者,洛伦兹曲线可以表示为

 L(y)=(int_0^yxdF(x))/mu,

其中 F(y) 是有序个体的累积分布函数,而 mu 是平均大小。

如果所有个体的大小都相同,则洛伦兹曲线是一条笔直的对角线,称为均等线。如果大小存在任何不平等,则洛伦兹曲线会落在均等线下方。不平等总量的可以用基尼系数(也称为基尼比率)来概括,基尼系数是均等线和洛伦兹曲线所包围的面积与均等线下总三角形面积之比。围绕对称轴的不对称程度由所谓的洛伦兹不对称系数来衡量。


参见

基尼系数, 洛伦兹不对称系数

此条目由Christian Damgaard贡献

在 Wolfram|Alpha 中探索

参考文献

Dagum, C. "The Generation and Distribution of Income, the Lorenz Curve and the Gini Ratio." Écon. Appl. 33, 327-367, 1980.Kotz, S.; Johnson, N. L.; and Read, C. B. Encyclopedia of Statistical Science. New York: Wiley, 1983.Lorenz, M. O. "Methods for Measuring the Concentration of Wealth." Amer. Stat. Assoc. 9, 209-219, 1905.Weiner, J. and Solbrig, O. T. "The Meaning and Measurement of Size Hierarchies in Plant Populations." Oecologia 61, 334-336, 1984.

在 Wolfram|Alpha 上被引用

洛伦兹曲线

请引用为

Damgaard, Christian. "Lorenz Curve." 来自 MathWorld--Wolfram Web 资源,由 Eric W. Weisstein 创建。 https://mathworld.net.cn/LorenzCurve.html

主题分类