Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 145, 2003.Calude, C. S.; Dinneen, M. J.; and Shu, C.-K. "Computing a Glimpse of Randomness." Exper. Math.11, 361-370, 2002.Calude, C. S. and Dinneen, M. J. "Exact Approximations of Omega Numbers." Int. J. Bifur. Chaos17, 1937-1954, 2007.Chaitin, G. J. "A Theory of Program Size Formally Identical to Information Theory." J. Assoc. Comput. Mach.22, 329-340, 1975.Chaitin, G. J. "How Much Information Can There be in a Real Number?" Int. J. Bifur. Chaos17, 1933-1935, 2007.Chaitin, G. Meta Math!:The Quest for Omega. New York: Pantheon Books, 2005.Finch, S. R. "Chaitin's Constant." §1.11 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 81-83, 2003.Gardner, M. "The Random Number Bids Fair to Hold the Mysteries of the Universe." Sci. Amer.241, 20-34, Nov. 1979.Gardner, M. "Chaitin's Omega." Ch. 21 in Fractal Music, Hypercards, and More Mathematical Recreations from Scientific American Magazine. New York: W. H. Freeman, pp. 307-319, 1992.Kobayashi, K. "Sigma(N)O-Complete Properties of Programs and Lartin-Lof Randomness." Information Proc. Let.46, 37-42, 1993.Sloane, N. J. A. Sequences A079365 and A100264 in "The On-Line Encyclopedia of Integer Sequences."Solovay, R. M. "A Version of for Which ZFC Cannot Predict a Single Bit." In Finite Versus Infinite. Contributions to an Eternal Dilemma (Ed. C. Calude and G. Păun). London: Springer-Verlag, pp. 323-334, 2000.