主题
Search

Carlson 椭圆积分


Carlson 椭圆积分,也称为 Carlson 对称形式,是一组标准的规范椭圆积分,它为勒让德第一、第二和第三类椭圆积分提供了方便的替代方案。 Carlson 椭圆积分和勒让德椭圆积分可以相互转换。

Carlson 椭圆积分定义为

R_C(x,y)=R_F(x,y,y)
(1)
=1/2int_0^infty(dt)/((t+y)sqrt(t+x))
(2)
R_D(x,y,z)=R_J(x,y,z,z)
(3)
=3/2int_0^infty(dt)/(sqrt(t+x)sqrt(t+y)(t+z)^(3/2))
(4)
R_E(x,y)=1/piint_0^infty(x/(t+x)+y/(t+y))(sqrt(t)dt)/(sqrt(t+x)sqrt(t+y))
(5)
R_F(x,y,z)=1/2int_0^infty(dt)/(sqrt(t+x)sqrt(t+y)sqrt(t+z))
(6)
R_G(x,y,z)=1/4int_0^infty((xt)/(t+x)+(yt)/(t+y)+(zt)/(t+z))(dt)/(sqrt(t+x)sqrt(t+y)sqrt(t+z))
(7)
R_J(x,y,z,p)=3/2int_0^infty(dt)/((t+p)sqrt(t+x)sqrt(t+y)sqrt(t+z))
(8)
R_K(x,y)=1/piint_0^infty(dt)/(sqrt(t)sqrt(t+x)sqrt(t+y))
(9)
R_M(x,y,p)=2/piint_0^infty(dt)/((t+p)sqrt(t+x)sqrt(t+y)).
(10)

它们在 Wolfram 语言 中实现为CarlsonRC[x, y],CarlsonRD[x, y, z],CarlsonRE[x, y],CarlsonRF[x, y, z],CarlsonRG[x, y, z],CarlsonRJ[x, y, z, rho],CarlsonRK[x, y], 和CarlsonRM[x, y, rho].

对于 0<=phi<=2pi0<=k^2sin^2phi<=1,第一、第二和第三类不完全椭圆积分通过以下方式与 Carlson 椭圆积分相关

F(phi,k)=sinphiR_F(cos^2phi,1-k^2sin^2phi,1)
(11)
E(phi,k)=sinphiR_F(cos^2phi,1-k^2sin^2phi,1)-1/3k^2sin^3phiR_D(cos^2phi,1-k^2sin^2phi,1)
(12)
Pi(phi,n,k)=sinphiR_F(cos^2phi,1-k^2sin^2phi,1)+1/3nsin^3phiR_J(cos^2phi,1-k^2sin^2phi,1,1-nsin^2phi).
(13)

通过将 phi=pi/2 代入上述公式,用不完全 Carlson 积分表示完全勒让德-雅可比积分,得到

K(k)=R_F(0,1-k^2,1)
(14)
E(k)=R_F(0,1-k^2,1)-1/3k^2R_D(0,1-k^2,1)
(15)
Pi(n,k)=R_F(0,1-k^2,1)+1/3nR_J(0,1-k^2,1,1-n)
(16)

(Press 和 Teukolsky 1990)和

K(k)=1/2piR_K(1,1-k^2)
(17)
E(k)=1/2piR_E(1,1-k^2)
(18)
Pi(n,k)=1/2piR_K(1,1-k^2)+1/4npiR_M(1,1-k^2,1-n).
(19)

这些函数也满足以下齐次性

R_F(kappax,kappay,kappaz)=kappa^(-1/2)R_F(x,y,z)
(20)
R_J(kappax,kappay,kappaz,kappap)=kappa^(-3/2)R_J(x,y,z,p)
(21)

(Press 和 Teukolsky 1990)。

特殊值包括

R_D(0,2,1)=(3pi)/L
(22)
R_F(0,1,2)=L/2
(23)
R_K(1,2)=L/pi,
(24)

其中 L双纽线常数


另请参阅

椭圆积分

使用 Wolfram|Alpha 探索

参考文献

Carlson, B. C. Special Functions of Applied Mathematics. New York: Academic Press, 1977.Carlson, B. C. "Elliptic Integrals of the First Kind." SIAM J. Math. Anal. 8, 231-242, 1977.Carlson, B. C. "A Table of Elliptic Integrals of the Second Kind." Math. Comput. 49, 595-606, 1987.Carlson, B. C. "A Table of Elliptic Integrals of the Third Kind." Math. Comput. 51, 267-280, 1988.Carlson, B. C. "Numerical Computation of Real or Complex Elliptic Integrals." Numer. Algorithms 10, 13-26, 1995.Carlson, B. C. "Elliptic Integrals." Ch. 19 in Digital Library of Mathematical Functions. 2020-12-15. https://dlmf.nist.gov/19.Press, W. H. and Teukolsky, S. A. "Elliptic Integrals." Computers in Physics 4, 92-98, 1990.

请引用为

Weisstein, Eric W. “Carlson 椭圆积分。” 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/CarlsonEllipticIntegrals.html

主题分类