主题
Search

斯坦纳树


SteinerTree

对于图 G 的顶点子集,斯坦纳树是包含所有顶点的最小权重连通子图 G。它始终是一棵树。斯坦纳树具有实际应用,例如,在确定连接若干个点所需的最短电线总长度时(Hoffman 1998,第164-165页)。

确定斯坦纳树是 NP 完全问题,甚至难以近似。存在由 Robins 和 Zelikovski (2000) 提出的 1.55 近似算法,但已知在 95/94 内的近似是 NP 困难的 (Chlebik 和 Chlebikova 2002)。


另请参阅

普拉托问题,

使用 探索

参考文献

Chlebik, M. and J.Chlebikova, J. "Approximation Hardness of the Steiner Tree Problem on Graphs." Proc. 8th Scandinavian Workshop on Algorithm Theory (SWAT). Springer-Verlag, pp. 170-179, 2002.Chopra, S. and Rao, M. R. "The Steiner Tree Problem 1: Formulations, Compositions, and Extension of Facets." Mathematical Programming 64, 209-229, 1994.Chopra, S. and Rao, M. R. "The Steiner Tree Problem 2: Properties and Classes of Facets." Mathematical Programming 64, 231-246, 1994.Chung, F. R. K.; Gardner, M.; and Graham, R. L. "Steiner Trees on a Checkerboard." Math. Mag. 62, 83-96, 1989.Cieslik, D. Steiner Minimal Trees. Amsterdam: Kluwer, 1998.Du, D.-Z.; Smith, J. M.; and Rubinstein, J. H. Advances in Steiner Trees. Dordrecht, Netherlands: Kluwer, 2000.Ganley, J. "The Steiner Tree Page." http://ganley.org/steiner/.Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, 1998.Hwang, F.; Richards, D.; and Winter, P. The Steiner Tree Problem. Amsterdam, Netherlands: North-Holland, 1992.Ivanov, A. O. and Tuzhilin, A. A. Minimal Networks: The Steiner Problem and Its Generalizations. Boca Raton, FL: CRC Press, 1994.Robins, G. and Zelikovski, A. "Improved Steiner Tree Approximation in Graphs." In Proc. 11th ACM-SIAM Symposium on Discrete Algorithms. pp. 770-779, 2000.Skiena, S. S. "Steiner Tree." §8.5.10 in The Algorithm Design Manual. New York: Springer-Verlag, pp. 339-342, 1997.

在 中被引用

斯坦纳树

请这样引用

韦斯坦因,埃里克·W. "斯坦纳树。" 来自 Web 资源。 https://mathworld.net.cn/SteinerTree.html

主题分类