主题
Search

Nut 图


NutGraphs

Nut 图是在 n>=2 个顶点上的图,其邻接矩阵 A矩阵秩为 1 且不包含 0 元素(Sciriha 1998, 2008;Sciriha 和 Gutman,1998;以及 Sciriha 和 Fowler 2008)。顶点数为 n=1, 2, ... 的 Nut 图的数量为 0, 0, 0, 0, 0, 0, 3, 13, 560, 12551, 2060490, 208147869, 96477266994, ... (House of Graphs)。

n-反棱柱图n 不能被 3 整除时是 Nut 图。

NutCirculantGraphs

Damnjanovi'c (2022) 证明了当顶点数为 n 且顶点度为 d 时,存在以下值的循环 Nut 图,且仅存在这些值

1. n 为偶数,d=8 (mod 4),且 n>=d+4,

2. n=14d=8,

3. n>=18 为偶数且 d=8,

4. n 为偶数,d=8,且 n>=14,或

5. n 为偶数,d>=16,且 n>=d+6。顶点数不超过 16 的循环 Nut 图的完整集合如上所示。


另请参阅

邻接矩阵, 零空间, 矩阵秩

使用 Wolfram|Alpha 探索

参考文献

Coolsaet, K.; Fowler, P. W.; And Goedgebeur, J. "Generation and Properties of Nut Graphs." MATCH Commun. Math. Comput. Chem. 80, 423-444, 2018.Damnjanovi'c, I. "Complete Resolution of the Circulant Nut Graph Order-Degree Existence Problem." 6 Dec 2022. https://arxiv.org/abs/2212.03026.Gauci, J. B.; Pisanski, T.; And Sciriha, I. "Existence of Regular Nut Graphs and the Fowler Construction." 12 Nov 2019. https://arxiv.org/abs/1904.02229.Fowler, P. W.; Gauci, J. B.; Goedgebeur, J.; Pisanski, T.; and Sciriha, I. "Existence of Regular Nut Graphs for Degree at Most 11." Disc. Math. Graph Th. 40, 533-557, 2020.House of Graphs. "Nut Graphs." https://hog.grinvin.org/meta-directory/nut.Sciriha. I. "On the Construction of Graphs of Nullity One." Disc. Math. 181, 193-211, 1998.Sciriha, I. "Coalesced and Embedded Nut Graphs in Singular Graphs." Ars Math. Contemp. 1, 20-31, 2008.Sciriha, I. and Fowler, P. W. "On Nut and Core Singular Fullerenes." Disc. Math. 308, 267-276, 2008.Sciriha, I. and Gutman, I. "Nut Graphs: Maximally Extending Cores." Util. Math. 54, 257-272, 1998.

请将此引用为

Weisstein, Eric W. "Nut 图。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/NutGraph.html

主题分类