主题
Search

中间层猜想


中间层猜想(Havel 1983,Buck 和 Wiedemann 1984),也称为旋转门猜想,假设阶数为 n中间层图对于每个 n>=1 都存在哈密顿环

该猜想已由 Mütze (2016) 证明;另见 Mütze (2024)。

由于中间层图顶点传递的,证明该猜想确定了这些图不是 Thomassen 关于非哈密顿顶点传递图的猜想的反例。

Knuth (2021) 在他的书中(Mütze 2024)给中间层猜想在所有未解决问题中最高的难度评级(49/50)。


另请参阅

哈密顿环, 中间层图, 顶点传递图

使用 Wolfram|Alpha 探索

参考文献

Buck, M. and Wiedemann, D. "Gray Codes With Restricted Density." Disc. Math. 48, 163-171, 1984.Diaconis, P. and Graham, R. Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks. Princeton, NJ: Princeton UNiversity Press, 2011.Felsner, S. and Trotter, W. T. "Colorings of Diagrams of Interval Orders and alpha-Sequences of Sets." Disc. Math. 144, 23-31, 1995.Havel, I. "Semipaths in Directed Cubes." In Graphs and Other Combinatorial Topics (Prague, 1982). Leipzig, Germany: Teubner, pp. 101-108, 1983.Kierstead, H. A. and Trotter, W. T. "Explicit Matchings in the Middle Levels of the Boolean Lattice." Order 5, 163-171, 1988.Knuth, D. E. The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1. New York: Addison-Wesley, 2021.Mütze, T. "Proof of the Middle Levels Conjecture." 11 Aug 2014. https://arxiv.org/abs/1404.4442.Mütze, T. "On Hamilton Cycles in Graphs Defined by Intersecting Set Systems." Not. Amer. Soc. 74, 583-592, 2024.Savage, C. D. and Winkler, P. "Monotone Gray Codes and the Middle Levels Problem." J. Combin. Th. Ser. A 70, 230-248, 1995.Winkler, P. Mathematical Puzzles. Boca Raton, FL: CRC Press, 2003.

引用为

Weisstein, Eric W. "中间层猜想。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/MiddleLevelsConjecture.html

主题分类