主题
Search

Dejter 图


Dejter 图是一个在 112 个顶点和 336 条边上的弱正则图,其正则参数为 (nu,k,lambda,mu)=(112,6,0,(0,1,2))。它可以通过从构造为二进制 7-立方体的超立方体图 Q_7 中删除长度为 7 的汉明码的副本获得。它也与卢布尔雅那图有关。

Dejter 图是二分图

它在 Wolfram 语言中实现为GraphData["DejterGraph"].


另请参阅

超立方体图, 卢布尔雅那图, 弱正则图

使用 Wolfram|Alpha 探索

参考文献

Borges, J. and Dejter, I. J. "On Perfect Dominating Sets in Hypercubes and Their Complements." J. Combin. Math. Combin. Comput. 20, 161-173, 1996.Dejter, I. J. "On Symmetric Subgraphs of the 7-Cube: an Overview." Disc. Math. 124, 55-66, 1994.Dejter, I. J. "Symmetry of Factors of the 7-Cube Hamming Shell." J. Combin. Des. 5, 301-309, 1997.Dejter, I. J. and Guan P. "Square-Blocking Edge Subsets in Hypercubes and Vertex Avoidance." In Graph Theory, Combinatorics, Algorithms, and Applications (San Francisco, CA, 1989). Philadelphia, PA: SIAM, pp. 162-174, 1991.Dejter, I. J. and Pujol, J. "Perfect Domination and Symmetry in Hypercubes." In Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, Florida, 1995). Congr. Numer. 111, 18-32, 1995.Dejter, I. J. and Weichsel P. M. "Twisted Perfect Dominating Subgraphs of Hypercubes." In Proceedings of the Twenty-Fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, Florida, 1993). Congr. Numer. 94, 67-78, 1993.Klin, M.; Lauri, J.; and Ziv-Av, M. "Links Between Two Semisymmetric Graphs on 112 Vertices Via Association Schemes." J. Symb. Comput. 47, 1175-1191, 2012.

请引用本文为

Weisstein, Eric W. "Dejter 图。" 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/DejterGraph.html

主题分类