主题
Search

立方体线段选取--面和内部


CubeLinePickingFaceandInterior

考虑在一个单位立方体内部随机选取一点与立方体表面上一点之间距离的分布。如上图所示的概率函数由 Mathai 等人 (1999) 以(近似)闭合形式找到。经过简化、更正错误和完成积分,得到了闭合形式

 P(l)={4/3l^4-2pil^2(l-1)   for 0<=l<=1; 2l{1/3[(3-4sqrt(l^2-1))l^2-8sqrt(l^2-1)-6pil+6pi-1]+4l^2sec^(-1)l}   for 1<l<=sqrt(2); 2l{1/3[(2sqrt(l^2-2)+3pi-3)l^2+8sqrt(l^2-2)+6pi-5] ; -4(l^2+2)tan^(-1)(sqrt(l^2-2))+4ltan^(-1)(lsqrt(l^2-2))-4lcsc^(-1)(sqrt(2-2l^(-2)))}   for sqrt(2)<l<=sqrt(3).
(1)

对于 n=0, 2, 4, ... 的前几个偶数阶原点矩为 1, 2/3, 11/18, 211/315, 187/225, 11798/10395, ....


另请参阅

立方体线段选取, 立方体线段选取--面和面

使用 Wolfram|Alpha 探索

参考文献

Mathai, A. M.; Moschopoulos, P.; 和 Pederzoli, G. "立方体中随机点之间的距离。" J. Statistica 59, 61-81, 1999.

请引用为

Weisstein, Eric W. "立方体线段选取--面和内部。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/CubeLinePickingFaceandInterior.html

主题分类