第 个 cabtaxi 数是可以以
种方式表示为两个(不一定是正)立方数之和的最小正数。 该名称源自 taxicab 数,后者是可以以
种方式表示为 正 立方数之和的最小数。 前几个是 1, 91, 728, 2741256, 6017193, 1412774811, 11302198488, 137513849003496, 424910390480793000, 933528127886302221000, ... (OEIS A047696),如下所示。
|
(1)
| |||
|
(2)
| |||
|
(3)
| |||
|
(4)
| |||
|
(5)
| |||
|
(6)
| |||
|
(7)
| |||
|
(8)
| |||
|
(9)
| |||
|
(10)
| |||
|
(11)
| |||
|
(12)
| |||
|
(13)
| |||
|
(14)
| |||
|
(15)
| |||
|
(16)
| |||
|
(17)
| |||
|
(18)
| |||
|
(19)
| |||
|
(20)
| |||
|
(21)
| |||
|
(22)
| |||
|
(23)
| |||
|
(24)
| |||
|
(25)
| |||
|
(26)
| |||
|
(27)
| |||
|
(28)
| |||
|
(29)
| |||
|
(30)
| |||
|
(31)
| |||
|
(32)
| |||
|
(33)
| |||
|
(34)
| |||
|
(35)
| |||
|
(36)
| |||
|
(37)
| |||
|
(38)
| |||
|
(39)
| |||
|
(40)
| |||
|
(41)
| |||
|
(42)
| |||
|
(43)
| |||
|
(44)
| |||
|
(45)
| |||
|
(46)
| |||
|
(47)
| |||
|
(48)
| |||
|
(49)
| |||
|
(50)
| |||
|
(51)
| |||
|
(52)
| |||
|
(53)
| |||
|
(54)
| |||
|
(55)
|
第 9 项由 D. Moore (2005) 发现,第 10 项由 Christian Boyer 在 2006 年发现,后者由 Hollerbach (2008) 独立验证。