一个关于格和的方程
(Borwein and Bailey 2003, p. 26)
此处,撇号表示求和不包括 (0, 0, 0)。该和在数值上等于
(OEIS A085469),该值被称为“马德隆常数” 。
对于
,目前尚无闭合形式解 (Bailey et al. 2006)。
另请参阅
格和,
马德隆常数
使用 Wolfram|Alpha 探索
参考文献
Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. "Ten Problems in Experimental Mathematics." Amer. Math. Monthly 113, 481-509, 2006.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.Borwein, J.; Bailey, D.; and Girgensohn, R. §4.3.2 and 4.3.3 in Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, p. 301, 1987.Finch, S. R. "Madelung's Constant." §1.10 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 76-81, 2003.Sloane, N. J. A. Sequence A085469 in "The On-Line Encyclopedia of Integer Sequences."在 Wolfram|Alpha 上被引用
本森公式
请按如下方式引用
Eric W. Weisstein “本森公式。” 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/BensonsFormula.html
主题分类