主题
Search

螺线正多边形


通过采取一系列长度为 1, 2, ..., n 的步长,并在每一步后转动角度 theta 而形成的图形。螺线正多边形的符号是 ^(a_1,...,a_k)n_theta,其中 a_is 表示这些步骤的转动方向为 -theta

Spirolateral2-60
Spirolateral3-36
Spirolateral3-45
Spirolateral3-72
Spirolateral3-108
Spirolateral-90
Spirolateral9-90-6

另请参阅

Logo, Maurer Rose, Paterson's Worms, Spirograph, Turtle Geometry

使用 Wolfram|Alpha 探索

参考文献

Gardner, M. "Mathematical Games: Fantastic Patterns Traced by Programmed 'Worms.' " Sci. Amer. 229, 116-123, Nov 1973.Gardner, M. "Worm Paths." Ch. 17 in Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, pp. 205-221, 1986.Hall, L. "Trochoids, Roses, and Thorns--Beyond the Spirograph." College Math. J. 23, 20-35, 1992.Odds, F. C. "Spirolaterals." Math. Teacher 66, 121-124, 1973.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 239-241, 1991. Wolfram Research, Inc. "Spirographs with Mathematica." http://library.wolfram.com/infocenter/Demos/129/.

在 Wolfram|Alpha 上被引用

螺线正多边形

请按如下方式引用

Weisstein, Eric W. “螺线正多边形。” 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/Spirolateral.html

主题分类