主题
Search

Mousetrap


Cayley 发明的排列问题。将数字 1, 2, ..., n 写在一副牌上,并洗牌。现在,从顶部的牌开始计数。如果选中的牌与计数不相等,则将其移动到牌堆底部并继续向前计数。如果选中的牌确实与计数相等,则丢弃选中的牌并从 1 重新开始计数。如果所有牌都被丢弃,则游戏获胜;如果计数达到 n+1,则游戏失败。

n=1, 2, ... 时,卡片的排列方式使得至少一张卡片在正确位置的数量为 1, 1, 4, 15, 76, 455, ... (OEIS A002467)。


使用 探索

参考文献

Cayley, A. "A Problem in Permutations." Quart. Math. J. 1, 79, 1857.Cayley, A. "On the Game of Mousetrap." Quart. J. Pure Appl. Math. 15, 8-10, 1877.Cayley, A. "A Problem on Arrangements." Proc. Roy. Soc. Edinburgh 9, 338-342, 1878.Cayley, A. "Note on Mr. Muir's Solution of a Problem of Arrangement." Proc. Roy. Soc. Edinburgh 9, 388-391, 1878.Guy, R. K. "Mousetrap." §E37 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 237-238, 1994.Guy, R. K. and Nowakowski, R. J. "Mousetrap." In Combinatorics, Paul Erdős is Eighty, Vol. 1 (Ed. D. Miklós, V. T. Sós, and T. Szőnyi). Budapest: János Bolyai Mathematical Society, pp. 193-206, 1993.Guy, R. K. and Nowakowski, R. J. "Monthly Unsolved Problems, 1696-1995." Amer. Math. Monthly 102, 921-926, 1995.Muir, T. "On Professor Tait's Problem of Arrangement." Proc. Roy. Soc. Edinburgh 9, 382-387, 1878.Muir, T. "Additional Note on a Problem of Arrangement." Proc. Roy. Soc. Edinburgh 11, 187-190, 1882.Mundfrom, D. J. "A Problem in Permutations: The Game of 'Mousetrap.' " European J. Combin. 15, 555-560, 1994.Sloane, N. J. A. Sequences A002467/M3507, A002468/M2945, and A002469/M3962 in "The On-Line Encyclopedia of Integer Sequences."Steen, A. "Some Formulae Respecting the Game of Mousetrap." Quart. J. Pure Appl. Math. 15, 230-241, 1878.Tait, P. G. Scientific Papers, Vol. 1. Cambridge, England: University Press, p. 287, 1898.

在 中被引用

Mousetrap

请引用为

Weisstein, Eric W. "Mousetrap." 来自 —— 资源。 https://mathworld.net.cn/Mousetrap.html

主题分类