主题
Search

Mousetrap


Cayley 发明的排列问题。将数字 1, 2, ..., n 写在一副牌上,并洗牌。现在,从顶部的牌开始计数。如果选中的牌与计数不相等,则将其移动到牌堆底部并继续向前计数。如果选中的牌确实与计数相等,则丢弃选中的牌并从 1 重新开始计数。如果所有牌都被丢弃,则游戏获胜;如果计数达到 n+1,则游戏失败。

n=1, 2, ... 时,卡片的排列方式使得至少一张卡片在正确位置的数量为 1, 1, 4, 15, 76, 455, ... (OEIS A002467)。


使用 Wolfram|Alpha 探索

参考文献

Cayley, A. "A Problem in Permutations." Quart. Math. J. 1, 79, 1857.Cayley, A. "On the Game of Mousetrap." Quart. J. Pure Appl. Math. 15, 8-10, 1877.Cayley, A. "A Problem on Arrangements." Proc. Roy. Soc. Edinburgh 9, 338-342, 1878.Cayley, A. "Note on Mr. Muir's Solution of a Problem of Arrangement." Proc. Roy. Soc. Edinburgh 9, 388-391, 1878.Guy, R. K. "Mousetrap." §E37 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 237-238, 1994.Guy, R. K. and Nowakowski, R. J. "Mousetrap." In Combinatorics, Paul Erdős is Eighty, Vol. 1 (Ed. D. Miklós, V. T. Sós, and T. Szőnyi). Budapest: János Bolyai Mathematical Society, pp. 193-206, 1993.Guy, R. K. and Nowakowski, R. J. "Monthly Unsolved Problems, 1696-1995." Amer. Math. Monthly 102, 921-926, 1995.Muir, T. "On Professor Tait's Problem of Arrangement." Proc. Roy. Soc. Edinburgh 9, 382-387, 1878.Muir, T. "Additional Note on a Problem of Arrangement." Proc. Roy. Soc. Edinburgh 11, 187-190, 1882.Mundfrom, D. J. "A Problem in Permutations: The Game of 'Mousetrap.' " European J. Combin. 15, 555-560, 1994.Sloane, N. J. A. Sequences A002467/M3507, A002468/M2945, and A002469/M3962 in "The On-Line Encyclopedia of Integer Sequences."Steen, A. "Some Formulae Respecting the Game of Mousetrap." Quart. J. Pure Appl. Math. 15, 230-241, 1878.Tait, P. G. Scientific Papers, Vol. 1. Cambridge, England: University Press, p. 287, 1898.

在 Wolfram|Alpha 中被引用

Mousetrap

请引用为

Weisstein, Eric W. "Mousetrap." 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/Mousetrap.html

主题分类