主题
Search

单调矩阵


一个 n 阶单调矩阵是一个 n×n 矩阵,其中每个元素要么是 0,要么包含集合 {1,...,n} 中的一个数字,并服从以下条件:

1. 每行中的填充元素严格递增,

2. 每列中的填充元素严格递减,并且

3. 正斜率条件:对于两个具有相同元素的填充单元格,更靠右的单元格位于更早的行中。

阶数为 n=1, 2, ... 的不同单调矩阵的数量分别为 2, 19, 712, ... (OEIS A086976)。 例如,2 阶单调矩阵为

 [0 0; 0 0],[0 0; 0 1],[0 0; 0 2],[0 0; 1 0],[0 0; 1 2],[0 0; 2 0],
[0 1; 0 0],[0 1; 1 0],[0 1; 2 0],[0 2; 0 0],[0 2; 0 1],[0 2; 1 0],
[0 2; 2 0],[1 0; 0 0],[1 0; 0 2],[1 2; 0 0],[2 0; 0 0],[2 0; 0 1],
[2 0; 1 0].

对于 n=1, 2, ...,n×n 矩阵中占据的最大单元格数由 1, 2, 5, 8, 11, 14, 19, ... 给出 (OEIS A070214)。


使用 Wolfram|Alpha 探索

参考文献

Sloane, N. J. A. 序列 A070214A086976,收录于“整数序列在线大全”。Stein, S. K. 和 Szabó, S. 代数与平铺。 华盛顿特区: Math. Assoc. Amer., p. 95, 1994.

在 Wolfram|Alpha 中被引用

单调矩阵

请引用为

Weisstein, Eric W. “单调矩阵。” 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/MonotonicMatrix.html

主题分类