设 和 为格,且设 。如果 是单射且满射,那么如果它保持并运算,则它是 join-同构。
Join-同构
另请参阅
Join-嵌入, Join-自同态, Join-同态, Meet-同构此条目由 Matt Insall (作者链接) 贡献
使用 Wolfram|Alpha 探索
参考文献
Bandelt, H. H. "Tolerance Relations on Lattices." Bull. Austral. Math. Soc. 23, 367-381, 1981.Birkhoff, G. 格理论,第 3 版 Providence, RI: Amer. Math. Soc., 1967.Chajda, I. and Zelinka, B. "Tolerances and Convexity." Czech. Math. J. 29, 584-587, 1979.Chajda, I. and Zelinka, B. "A Characterization of Tolerance-Distributive Tree Semilattices." Czech. Math. J. 37, 175-180, 1987.Grätzer, G. 通用格理论,第 2 版 Boston, MA: Birkhäuser, 1998.Hobby, D. and McKenzie, R. 有限代数的结构。 Providence, RI: Amer. Math. Soc., 1988.Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.Schweigert, D. "Central Relations on Lattices." J. Austral. Math. Soc. 37, 213-219, 1988.Schweigert, D. and Szymanska, M. "On Central Relations of Complete Lattices." Czech. Math. J. 37, 70-74, 1987.在 Wolfram|Alpha 中被引用
Join-同构请按如下方式引用
Insall, Matt. "Join-Isomorphism." 来自 MathWorld--Wolfram 网络资源,由 Eric W. Weisstein 创建。 https://mathworld.net.cn/Join-Isomorphism.html