主题
Search

科普森不等式


{a_n} 为一个 非负 序列f(x) 为一个 非负 可积函数。定义

A_n=sum_(k=1)^(n)a_k
(1)
B_n=sum_(k=n)^(infty)a_k
(2)

F(x)=int_0^xf(t)dt
(3)
G(x)=int_x^inftyf(t)dt,
(4)

并取 0<p<1。对于积分,

 int_0^infty[(G(x))/x]^pdx>(p/(p-1))^pint_0^infty[f(x)]^pdx
(5)

(除非 f 恒等于 0)。对于求和,

 (1+1/(p-1))B_1^p+sum_(n=2)^infty((B_n)/n)^p>(p/(p-1))^psum_(n=1)^inftya_n^p
(6)

(除非所有 a_n=0)。


使用 Wolfram|Alpha 探索

参考文献

Beesack, P. R. "On Some Integral Inequalities of E. T. Copson." In General Inequalities 2: Proceedings of the Second International Conference on General Inequalities, held in the Mathematical Research Institut at Oberwolfach, Black Forest, July 30-August 5, 1978 (Ed. E. F. Beckenbach). Basel: Birkhäuser, 1980.Copson, E. T. "Some Integral Inequalities." Proc. Royal Soc. Edinburgh 75A, 157-164, 1975-1976.Hardy, G. H.; Littlewood, J. E.; and Pólya, G. Theorems 326-327, 337-338, and 345 in Inequalities. Cambridge, England: Cambridge University Press, 1934.Mitrinovic, D. S.; Pecaric, J. E.; and Fink, A. M. Inequalities Involving Functions and Their Integrals and Derivatives. Dordrecht, Netherlands: Kluwer, 1991.

在 Wolfram|Alpha 上被引用

科普森不等式

引用为

Weisstein, Eric W. “科普森不等式。” 来自 MathWorld—— Wolfram Web 资源。 https://mathworld.net.cn/CopsonsInequality.html

主题分类