令 为一个 非负 序列, 为一个 非负 可积函数。定义
和
并取 。对于积分,
|
(5)
|
(除非 恒等于 0)。对于求和,
|
(6)
|
(除非所有 )。
使用 Wolfram|Alpha 探索
参考文献
Beesack, P. R. "On Some Integral Inequalities of E. T. Copson." In General Inequalities 2: Proceedings of the Second International Conference on General Inequalities, held in the Mathematical Research Institut at Oberwolfach, Black Forest, July 30-August 5, 1978 (Ed. E. F. Beckenbach). Basel: Birkhäuser, 1980.Copson, E. T. "Some Integral Inequalities." Proc. Royal Soc. Edinburgh 75A, 157-164, 1975-1976.Hardy, G. H.; Littlewood, J. E.; and Pólya, G. Theorems 326-327, 337-338, and 345 in Inequalities. Cambridge, England: Cambridge University Press, 1934.Mitrinovic, D. S.; Pecaric, J. E.; and Fink, A. M. Inequalities Involving Functions and Their Integrals and Derivatives. Dordrecht, Netherlands: Kluwer, 1991.在 Wolfram|Alpha 上被引用
科普森不等式
引用为
Weisstein, Eric W. “科普森不等式。” 来自 MathWorld—— Wolfram Web 资源。 https://mathworld.net.cn/CopsonsInequality.html
主题分类