如果 , 那么在
-均匀 超图 在
个顶点上分解为 1-因子,其中 1-因子是一组
个两两不相交的
-集。 Brouwer 和 Schrijver (1979) 给出了一个优美的证明,使用了 最大流最小割定理 的 网络流。
巴拉尼定理
另请参阅
克内泽尔图使用 探索
参考文献
Baranyai, Z. "On the Factorization of the Complete Uniform Hypergraph. Infinite and Finite Sets." In Infinite and Finite Sets, Vol. 1. Proceedings of a Colloquium held at Keszthely, June 25-July 1, 1973. Dedicated to Paul Erdős on his 60th Birthday (Ed. A. Hajnal, R. Rado, and V. T. Sós). Amsterdam, Netherlands: North-Holland, pp. 91-108, 1975.Brouwer, A. E. and Schrijver, A. "Uniform Hypergraphs." In Packing and Covering in Combinatorics. Mathematical Centre Tracts, No. 106, pp. 39-73, 1979.Tamm, U. "Applications of Baranyai's Theorem in Information Theory." In Proceedings of 6th Benelux-Japan Workshop on Coding and Information Theory, Essen, 1996 (Ed. A. J. Han Vinck and A. van Wijngaarden). Shannon Foundation, 1996. http://www.mathematik.uni-bielefeld.de/ahlswede/pub/tamm/baranyai.ps.van Lint, J. H. and Wilson, R. M. A Course in Combinatorics. New York: Cambridge University Press, pp. 476-479, 1993.West, D. "Re: disjoint cliques, resolutions of designs?" GRAPHNET@listserv.nodak.edu posting. Feb. 25, 2004. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0402&L=graphnet&F=&S=&P=4041.在 中被引用
巴拉尼定理请引用为
韦斯坦因,埃里克·W. “巴拉尼定理。” 来自 —— 资源。 https://mathworld.net.cn/BaranyaisTheorem.html