
Historical background
In 1859 Riemann broke important new ground in several areas of
mathematics by publishing the eight-page paper Ueber die Anzahl
der Primzahlen unter einer gegebenen Grösse (On the Number of
Primes Less than a Given Magnitude). In this paper he outlined a
method to prove the prime number theorem conjectured by Gauss
(1793) and Legendre (c. 1800). The prime number theorem states
that O(x), the number of prime numbers less than or equal to a
number x, is roughly x/ log x (in other words, the “probability” that
a number n is prime is about 1/ log n). There were many gaps in
Riemann’s outline and little progress was made for about 30 years,
but much effort by various mathematicians finally culminated in
independent proofs by Hadamard and de la Vallée-Poussin in 1896.

Riemann’s method is based on the function
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which is called in Mathematica. Euler had studied this
function earlier and proved the remarkable identity
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where the product runs over all prime numbers. Euler considered
the D function only for real values of s. Riemann’s great insight
was to study this function for complex values of s and to use the
powerful methods of complex analysis, which led him to connect
the complex zeros of this function and prime numbers:

O(x) t li(x) ª
P

li(x P) ∫ O( x)

where the sum is over all of the complex zeros P of the D function
and li(x) is the logarithmic integral function, that is, the principal
value of x

0 1/ log t dt. An important issue here is the size of
P li(xP) and in particular the magnitudes of the x P or the real

parts of the zeros. In fact it was subsequentlyshown that the prime
number theorem follows from the fact that the D function has no
complex zeros P with Re(P) ê 1.

Figure 1 is a Mathematica plot of li(x)ªO(x). One question is how
li(x) ª O(x) behaves for large x. From the plot one would suspect
that this quantity is positive (Riemann was the first to conjecture
this) and grows slowly with x. It turned out that at least the first of
these suspicions was incorrect: Littlewood (1914) showed that the
quantity must change sign infinitely often as x increases. However,
the first sign change has never been seen explicitly;all that is known
is that it occurs for some value of x below 10400.
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With regard to the magnitude of li(x)ªO(x), it is strongly believed
that this quantity is of order at most x log x. What is interesting
is that the actual bound is related to the location of the zeros of the
D function.

The Riemann hypothesis
Riemann’s paper contains one of the most celebrated of all math-
ematical problems—the so-called Riemann hypothesis that all the
complex zeros ofD(s) lie on the so-called “critical line” Re(s) ± 1/2.
If this is true, the prime numbers are in some sense distributed as
evenly as possible and li(x) ª O(x) grows no more rapidly than
O( x log x).

Little progress toward this result has been achieved since Riemann
first conjectured it, although many first-class mathematicians have
worked on it at some time in their careers. This is not to say that
such work has been fruitless. On the contrary, such work has led to

significant advances in many branches of mathematics, including
complex analysis, Fourier analysis, and analytic number theory.

Known results
Some of the results about the zeros of the D function are almost triv-
ial; others comprise some of the deepest theorems in mathematics
and are the work of some of the most talented mathematicians of
this century. For example, it is known that:

í D(s) has infinitely many real zeros, namely, at the negative even
integers.

í Each of the complex zeros lies within the “critical strip” 0 ~
Re(s) ~ 1.

í For each complex number P that is a zero of D, the numbers 1 ª P,
P, and 1 ª P are also zeros.

í At least 40% of the zeros lie on the critical line and nearly all of the
zeros that are not on it are arbitrarily close to it.

í The average distance between successive zeros in the vicinity of
1
2 ∫ it is about 2O/ log t

2O .

í Each of the first 1,500,000,001 complex zeros lies on the critical
line.

These and other results lead most mathematicians to believe the
Riemann hypothesis to be true, but it is still unproven.

Figure 2 is a contour plot of the logarithm of the absolute value of
the D function on the rectangle with vertices at 5,5∫40i,ª7∫40i,
and ª7. Notice the pole at s ± 1 and the zeros along the negative
real axis as well as the zeros along the critical line.

The Riemann-Siegel formula
The most efficient way known to compute a single value of D(s)
“far up” in the critical strip was published in 1932 by Siegel, who
reconstructed it from Riemann’s unpublished notes; the method is

now known as the Riemann-Siegel formula. For t real and positive,
one defines the functions

G(t) ± arg# 1
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and

Z(t) ± D 1
2 ∫ it eiG(t)

and extends them by analytic continuation to the complex plane
cut along the imaginary axis from i

2 to iÉ and from ª i
2 to ªiÉ.

The Riemann-Siegel formula is an asymptotic formula for Z(t), the
main term of which is

1Çn~ t/2O
2 cos[G(t) ª t log n]/ n

The functions Z(t) and G(t) are called and
in Mathematica.
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Note that there is a trivial relationship between the complex zeros
of D and the real zeros of Z and that for t real

D 1
2 ∫ it ± Z(t)

The splitting of D(s) into the two functions G(t) and Z(t) is conve-
nient for several reasons. First, for real values of t (i.e., along the
critical line) G(t) and Z(t) are real; therefore, complex arithmetic
can be completely avoided and, by the intermediate value theorem,
the zeros of Z(t) can readily be found by locating the sign changes
of Z(t). Second, there is an asymptotic formula for G(t) such that,
for any given precision, as t gets larger,G(t) actually takes less time
to evaluate and, using the Riemann-Siegel formula, the time to com-
pute Z(t) only increases as t. With previously known methods the
time increases as t. Thus one can extend computation of D(1/2∫ it)
to much larger values of t. Finally, to verify the Riemann hypothesis
in the range 0 ~ t ~ T, it is necessary to know that the number of

zeros on the critical line is the same as the number in the critical
strip. Counting sign changes of Z(t) provides the one number and

Re[G(T) ª i log D(1/2 ∫ iT)]
O

∫ 1

provides the other.

In 1903 Gram observed a simple rule for finding the sign changes
in Z(t): The zeros of Z(t) appear to alternate with the zeros of
sin G(t). Knowing the Riemann-Siegel formula, we can give a
heuristic argument for why Gram’s “law”, as it is called, might hold.
If we consider only the n ± 1 term of the sum in the Riemann-Siegel
formula, we get Z(t) u 2 cos G(t) that has its extrema at the zeros
of sin G(t). It is known that there are places where Gram’s law
fails, but it is amazing how rarely these failures actually occur. Just
look at the behavior of the plot of Z(t) below and see how crude

Z

an approximation 2 cos G(t) is to it; Z(t) takes on values that are
well outside the rangeª2 to 2.

The Lindelöf hypothesis
Another hypothesis associated with the D function is the so-called
Lindelöf hypothesis. Notice that the graph of Z(t) has places where
it gets much farther from the axis than it normally is. The Lindelöf
hypothesis says that the size of these “glitches” grows more slowly
than any positive power of t as t goes to É along the real axis.
It is known that they grow more slowly than t0.16 , but it is also
known that they are not bounded. From the plot here it indeed
appears that (t) is not bounded, but it is not clear how slowly
it grows. Although the Lindelöf hypothesis is weaker than the
Riemann hypothesis, it too has certain implications regarding the
distribution of the prime numbers.

The Hadamard product formula (1893) essentially expresses the D

function as an infinite-degree polynomial in factored form. From
this it can be seen that the large glitches with which the Lindelöf
hypothesis is concerned are related to the distances between nearby
zeros. Indeed in the plot of Z(t) below it appears that, at least
in a local sense, the largest values of the function occur between
zeros that are widely separated. Odlyzko (1987) found that the
distribution of the spacings between successive zeros appears to
be close to a certain distribution which governs the spacing between
eigenvalues of some random matrices. This result suggests that
the zeros of the D function might correspond to the eigenvalues
of a Hermitian operator. If this could indeed be shown, then the
Riemann hypothesis would be established.

About the plot
The plot below is of along five sections
of the positive real axis using the same horizontal and vertical
scale. Each section of the plot can be generated with the command

, with appro-
priate values for tmin and tmax. The curve is colored cyclically
from green to blue using the values of .

Noteworthy features of the plot include:
í As t gets larger the average spacing between successive zeros gets

closer to zero (this is a theorem of Littlewood).
í The spacing between successive zeros varies a great deal. In

fact the spacing between some zeros is known to be as small as
0.00031 times the average spacing.
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í With the exception of the first local maximum, each local maximum
occurs above the axis and each local minimum occurs below the
axis. The Riemannhypothesis implies that, aside from the exception
noted, this is always true.

í There are places where the graph almost turns around before it
crosses the axis. These places can be thought of as near coun-
terexamples to the Riemann hypothesis. Such behavior is known
as “Lehmer’s phenomenon”.

This poster is dedicated to the memory of Jerry B. Keiper 
(1953–1995), leader of the numerics research and develop-
ment group at Wolfram Research and author of many orig-
inal numerical algorithms in Mathematica. A first version 
of this poster was created in 1990 by Jerry Keiper and  
others, making use of Keiper’s extensive work on the 
Riemann zeta function. 

Jerry Keiper’s obituary appears on the World Wide Web in 
http://www.wri.com/keiper/obituary.html
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